
CS 460: INTRO TO COMPUTATIONAL

ROBOTICS

Assignment 3

Lorenzo Nieto

len44@rutgers.edu

Tasha Pais

tdp74@rutgers.edu

Rutgers University, Department of Computer Science

December 13, 2023

1



1 Setup maps and generate controls

1.1 Generate 4 maps with landmarks

The file ”map generator.py” handles map generation. It receives arguments –landmarks

k and –name path. It generates a map with k landmarks with x and y coordinates each

uniformly sampled in the range [0, 2] and saves the landmarks map in the file specified by

path.

1.2 Generate robot control sequences

Running the file ”controls.py” will populate the ”controls” folder with two control files for

each landmark map, making a total of ten control files. To generate a sequence of controls,

first a start configuration was randomly generated. It was ensured that the initial configura-

tion would stay 0.2m from the boundary. Then, a random control within the robot’s limits

was generated and integrated forward for two seconds. Only controls with positive velocity

were generated to give the robot a smoother trajectory and make visualization easier. At

each integration step, it was ensured that the robot stayed within 0.2m from the boundary

and if it didn’t, a new control was generated. Ten controls were generated in this way for

each control file. Finally, a plot showing the trajectories of all the control files was generated.

Each column corresponds to the landmark maps 0-4 and each row corresponds to a different

control sequence 0-1

2 Integrate Noisy Dynamics and Collect Sensor Read-

ings

2.1 Simulate robot’s motion and measurements

2.1.1 Actuation model

The ground truth files were generated by integrating forward the controls with added noise,

as explained in the assignment 3 pdf. It was ensured that if the control value for either

velocity or angular velocity was 0, then the noise added would also be 0. Also, the control

values never exceeded the robot’s limits, even after noise was added.

2



2.1.2 Odometry model

More Gaussian noise was then added to the executed controls from the previous step. Again,

the values were clamped so that they would not exceed the limits of the robot’s motor. Also,

it was ensured that if the original controls had a value of 0, then the odometer’s reading

would also be 0.

2.1.3 Observation model

The landmark sensor function in simulate.py calculates the distances and angles to each

landmark. For distance, the Pythagorean theorem is used. To find the angle in the local

robot’s coordinates, first, an intermediate angle is found. This angle is equal to the arctan

of the ratio between the landmark’s rise and the landmark’s run in relation to the ground

truth configuration. This is done with the arctan2 function provided by numpy. However,

we need to account for the robot’s heading angle, which is not necessarily 0. So we have

to subtract the ground truth angle from this intermediate angle and we get the angle that

we want. Finally, the angle is adjusted to be in the range [-pi, pi]. Noise is added to these

values from the landmark sensor in accordance with the assignment’s instructions.

2.2 Visualize the dead reckoning solution

To visualize the dead reckoning solution, FuncAnimation from matplotlib was used. The

landmark ground truth positions were drawn and these never change throughout the ani-

mation. Each frame, the robot’s ground truth position (blue rectangle), odometry position

(red rectangle), and landmark observations (red x’s) are updated and redrawn. additional

blue and red dots are drawn at the ground truth and odometry locations respectively to

aid in visualization. Finally, red lines are drawn to connect the odometry motion’s current

point and each landmark. These lines are updated at each frame. See the dr folder for

animations from five selected maps. It is clear that the odometry readings from the high

noise files result in motion that strays further from the ground truth path, and as a result

the landmark observation locations are more inaccurate too.

3 Implement Particle Filter for Localization

3.1 Given known initial robot pose

1. Initialization:

• Purpose: To create an initial set of hypotheses (particles) about the state of the

system (robot’s pose).

• Process: Each particle i is initialized with the same state x0
i = initial pose.

2. Prediction:

• Purpose: To simulate the effect of the motion command on each particle.

• Process: For each particle i, update its state xi based on the control input u and

motion model, with added noise.

3



• Formula:

x
′

i = xi +

v · cos(θ)v · sin(θ)
ω

 · dt+ noise

where v and ω are the linear and angular components of the control input u, and

dt is the time step.

3. Update (Weighting):

• Purpose: To evaluate each particle’s likelihood based on the observed sensor data.

• Process: For each particle i, compare its predicted state with the actual sensor

measurements and update its weight.

• Formula:

– For each landmark j, calculate the expected measurement zexpij based on the

particle’s state.

– Compare zexpij with the actual measurement zobsij .

– The weight wi for each particle is updated based on the likelihood of observ-

ing zobsij given zexpij , which is modeled as a Gaussian distribution:

wi = wi ·
∏
j

N (zobsij ; zexpij , σ2)

– The likelihood is computed for both distance and angle to each landmark.

– Here, σ represents the standard deviation of the sensor noise.

4. Normalization:

• Purpose: To ensure the weights sum up to 1.

• Formula:

wi =
wi∑
k wk

5. Resampling:

• Purpose: To focus on particles that are more likely, based on their weights.

• Process: Randomly select a new set of particles from the current set, where

particles with higher weights are more likely to be selected.

• Method: Stochastic universal sampling or similar.

• Result: A new set of particles, which will undergo the prediction step in the next

iteration.

6. Repeat Steps 2-5:

• For each time step or control input, repeat the prediction, update, normalization,

and resampling steps.

In summary, the particle filter iteratively predicts the effect of actions, updates particle

weights based on sensor observations, normalizes these weights, and resamples the particles

to focus on the most likely states. This process enables the filter to approximate the posterior

probability distribution of the system’s state.

4



4 Evaluation and Experiments

The file evaluation.py generates animations for the estimations gathered from the particle

filter. In the assignment instructions, the code is not run with the readings files as a

parameter, so in order to include the landmarks observation locations in the animations,

the readings file is used corresponding to the x, y, z from the other parameters. Similar

to the dead reckoning animations, the robot’s locations are drawn with rectangles and the

noisy landmark locations are drawn with lines connecting them to the current configuration.

The only difference is that the estimated locations from the particle filter are drawn in black

and so are the noisy landmarks.

To the right of the robot animation, plots with animations displaying the error are shown.

In the middle plot, the euclidean distance between the ground truth and estimate is plotted

on the y axis, and the time on the x axis. In the right plot, the difference between the

ground truth angle and the estimated angle is plotted (in radians) on the y axis, and the

corresponding time is plotted on the x axis. It was determined that when there was a high

amount of noise in readings, there was more error. However, choosing a higher amount of

particles decreased this error. However, choosing a high amount of particles severely lowered

the performance of the program. See video1 and video2 folders for visualizations.

4.1 Given known initial robot pose

Figure 1: 0, 0, L, 200

5



Figure 2: 1, 0, H, 200

Figure 3: 2, 1, L, 1000

Figure 4: 3, 0, H, 500

6



Figure 5: 4, 0, L, 200

7


	Setup maps and generate controls
	Generate 4 maps with landmarks
	Generate robot control sequences

	Integrate Noisy Dynamics and Collect Sensor Readings
	Simulate robot's motion and measurements
	Actuation model
	Odometry model
	Observation model

	Visualize the dead reckoning solution

	Implement Particle Filter for Localization
	Given known initial robot pose

	Evaluation and Experiments
	Given known initial robot pose


