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Problem 1

We aim to show that for any probability distribution q,

R(hr; q) ≥ R(h∗)

that is, the risk of the randomized classifier hr defined above is at least as high as the Bayes
risk.

Proof:
Given:

R(hr; q) =

∫
x

L∑
y=1

L∑
y′=1

L0/1(y
′, y)q(y′|x)p(x, y) dx

We need to show:
R(hr; q|x) ≥ R(h∗|x) for any x

By definition, the conditional risk R(hr; q|x) is:

R(hr; q|x) =
L∑

y=1

L∑
y′=1

L0/1(y
′, y)q(y′|x)p(y|x)

The Bayes classifier h∗(x) minimizes the risk, so for the Bayes risk R(h∗|x), we have:

R(h∗|x) = min
y

p(y|x)

For the 0/1 loss, we know that:

L0/1(y
′, y) =

{
0 if y′ = y

1 if y′ ̸= y

Thus, the risk for the randomized classifier can be rewritten as:

R(hr; q|x) = 1−
L∑

y=1

q(y|x)p(y|x)
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Since
∑L

y=1 q(y|x) = 1 and p(y|x) ≤ 1, we have:

R(hr; q|x) ≥ 1−max
y

p(y|x)

But maxy p(y|x) is exactly the risk R(h∗|x), therefore:

R(hr; q|x) ≥ R(h∗|x)

Hence, it is shown that the risk of the randomized classifier hr is at least as high as the
Bayes risk for any x.

Problem 2

We need to show that the posterior p(1|x) resulting from the equal-covariance Gaussian
generative model is equivalent to the logistic regression model, i.e.,

p(1|x) = 1

1 + exp(−w⊤x− b)

for some w ∈ Rd and b ∈ R.
Proof:
Given the Gaussian generative model, the likelihood for a class y is:

p(x|y) = 1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µy)

⊤Σ−1(x− µy)

)
Using Bayes’ rule, the posterior is:

p(y|x) = p(x|y)p(y)
p(x)

For binary classification (L = 2), focusing on p(1|x):

p(1|x) = p(x|1)p(1)
p(x|1)p(1) + p(x|2)p(2)

Substituting the Gaussian likelihoods and simplifying:

p(1|x) = 1

1 + p(x|2)p(2)
p(x|1)p(1)

Expressing the ratio inside the exponential:

p(1|x) = 1

1 + exp
(
log p(x|2)p(2)

p(x|1)p(1)

)
Expanding the logarithm and using the Gaussian likelihoods:

p(1|x) = 1

1 + exp
(
−1

2
(x− µ1)⊤Σ−1(x− µ1) +

1
2
(x− µ2)⊤Σ−1(x− µ2) + log p(2)

p(1)

)
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This can be rewritten as:

p(1|x) = 1

1 + exp(−w⊤x− b)

where
w = Σ−1(µ1 − µ2)

and

b =
1

2
(µ⊤

2 Σ
−1µ2 − µ⊤

1 Σ
−1µ1) + log

p(2)

p(1)

Hence, we have shown that p(1|x) from the Gaussian generative model has the same form
as the logistic regression model.

Problem 3

The question is whether logistic regression and linear discriminant analysis (LDA) based
on the equal-covariance Gaussian model will produce the same classifier when learned from
a given training set.

Answer:
Although both logistic regression and the equal-covariance Gaussian model-based LDA

lead to classifiers with similar forms of the posterior p(y|x), they generally do not produce
the same classifier when learned from the same training set. The key differences arise from
their learning approaches and assumptions.

Differences in Learning:

• Logistic Regression: It estimates the parameters directly by maximizing the likeli-
hood of the observed data. It does this without making strong assumptions about the
distribution of the predictor variables.

• LDA: It assumes that the predictor variables are normally distributed and that differ-
ent classes share the same covariance matrix. LDA estimates the parameters (means
and shared covariance matrix) based on these assumptions.

Implications:

1. Parameter Estimation: Since logistic regression and LDA use different methods for
parameter estimation, the resulting classifiers will differ unless the data perfectly fits
the assumptions made by LDA.

2. Assumptions: The equal-covariance Gaussian assumption of LDA is quite restrictive
compared to the flexibility of logistic regression. If the true data distribution deviates
from these assumptions (e.g., non-Gaussian features or unequal covariances), LDA’s
performance may be suboptimal compared to logistic regression.

3. Data Sensitivity: Logistic regression is more robust to deviations from Gaussian
distributions and is less sensitive to outliers compared to LDA.
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Conclusion:
While the two models have the same form of the posterior p(y|x), the differences in

assumptions and learning methods lead to different classifiers when trained on the same
dataset, except in special cases where the data perfectly aligns with LDA’s assumptions.
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