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Problem 1

Given the dual formulation of the SVM problem:

max
α

(
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj)

)
(1)

subject to the constraints

0 ≤ αi ≤ C, and
N∑
i=1

αiyi = 0. (2)

We can define the following to transform it into the canonical form of a quadratic program:
The objective vector v is:

v = −1N , (3)

where 1N is an N -dimensional vector of ones.
The Hessian matrix H is:

Hij = yiyjK(xi, xj), (4)

which is an N ×N symmetric matrix.
The inequality constraints matrix A and vector a are:

A =

(
IN
−IN

)
, a =

(
CN

0N

)
, (5)

where IN is the N × N identity matrix, CN is an N -dimensional vector with all elements
equal to C, and 0N is an N -dimensional vector of zeros.

The equality constraints matrix B and vector b are:

B = 1TNy, b = 0, (6)

where y is the vector of labels yi.
The solution u∗ of the quadratic program:

min
u

(
1

2
uTHu+ vTu

)
(7)

subject to
Au ≤ a, Bu = b (8)

will be equivalent to the solution α∗ in the SVM dual problem.
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Problem 2

Given a solved Support Vector Machine (SVM) dual problem with α∗ obtained, the bias
term b∗ can be computed as follows.

For any support vector xk with 0 < α∗
k < C, the following condition holds:

yk(⟨w∗, ϕ(xk)⟩+ b∗) = 1. (9)

By substituting the expression for w∗ =
∑N

i=1 α
∗
i yiϕ(xi), we get:

yk

(
N∑
i=1

α∗
i yi⟨ϕ(xi), ϕ(xk)⟩+ b∗

)
= 1. (10)

Given that K(xi, xk) = ⟨ϕ(xi), ϕ(xk)⟩, it simplifies to:

yk

(
N∑
i=1

α∗
i yiK(xi, xk) + b∗

)
= 1. (11)

Solving for b∗ gives us the exact formula:

b∗ = yk −
N∑
i=1

α∗
i yiK(xi, xk). (12)

This formula can be used to compute b∗ using any support vector xk.

2


