Problem Set 3*

Tasha Pais ${ }^{\dagger}$

Problem 1

Given the dual formulation of the SVM problem:

$$
\begin{equation*}
\max _{\alpha}\left(\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)\right) \tag{1}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
0 \leq \alpha_{i} \leq C, \quad \text { and } \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \tag{2}
\end{equation*}
$$

We can define the following to transform it into the canonical form of a quadratic program: The objective vector v is:

$$
\begin{equation*}
v=-1_{N}, \tag{3}
\end{equation*}
$$

where 1_{N} is an N-dimensional vector of ones.
The Hessian matrix H is:

$$
\begin{equation*}
H_{i j}=y_{i} y_{j} K\left(x_{i}, x_{j}\right), \tag{4}
\end{equation*}
$$

which is an $N \times N$ symmetric matrix.
The inequality constraints matrix A and vector a are:

$$
\begin{equation*}
A=\binom{I_{N}}{-I_{N}}, \quad a=\binom{C_{N}}{0_{N}} \tag{5}
\end{equation*}
$$

where I_{N} is the $N \times N$ identity matrix, C_{N} is an N-dimensional vector with all elements equal to C, and 0_{N} is an N-dimensional vector of zeros.

The equality constraints matrix B and vector b are:

$$
\begin{equation*}
B=1_{N}^{T} y, \quad b=0 \tag{6}
\end{equation*}
$$

where y is the vector of labels y_{i}.
The solution u^{*} of the quadratic program:

$$
\begin{equation*}
\min _{u}\left(\frac{1}{2} u^{T} H u+v^{T} u\right) \tag{7}
\end{equation*}
$$

subject to

$$
\begin{equation*}
A u \leq a, \quad B u=b \tag{8}
\end{equation*}
$$

will be equivalent to the solution α^{*} in the SVM dual problem.

[^0]
Problem 2

Given a solved Support Vector Machine (SVM) dual problem with α^{*} obtained, the bias term b^{*} can be computed as follows.

For any support vector x_{k} with $0<\alpha_{k}^{*}<C$, the following condition holds:

$$
\begin{equation*}
y_{k}\left(\left\langle w^{*}, \phi\left(x_{k}\right)\right\rangle+b^{*}\right)=1 . \tag{9}
\end{equation*}
$$

By substituting the expression for $w^{*}=\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} \phi\left(x_{i}\right)$, we get:

$$
\begin{equation*}
y_{k}\left(\sum_{i=1}^{N} \alpha_{i}^{*} y_{i}\left\langle\phi\left(x_{i}\right), \phi\left(x_{k}\right)\right\rangle+b^{*}\right)=1 . \tag{10}
\end{equation*}
$$

Given that $K\left(x_{i}, x_{k}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{k}\right)\right\rangle$, it simplifies to:

$$
\begin{equation*}
y_{k}\left(\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} K\left(x_{i}, x_{k}\right)+b^{*}\right)=1 \tag{11}
\end{equation*}
$$

Solving for b^{*} gives us the exact formula:

$$
\begin{equation*}
b^{*}=y_{k}-\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} K\left(x_{i}, x_{k}\right) \tag{12}
\end{equation*}
$$

This formula can be used to compute b^{*} using any support vector x_{k}.

[^0]: *Due: November 6, 2023, Student(s) worked with: None
 ${ }^{\dagger}$ NetID: tdp74, Email: tdp74@rutgers.edu

