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Problem 1

Given:

p(y|x) =
exp(wT

y x)∑L
y′=1 exp(w

T
y′x)

To show that the log-odds between two labels y and y′ is modeled by a linear function,
we can consider:

log

(
p(y|x)
p(y′|x)

)
Substitute the given probabilities:

log


exp(wT

y x)∑L
y′′=1 exp(w

T
y′′x)

exp(wT
y′x)∑L

y′′=1 exp(w
T
y′′x)


Now, since the denominators are the same, they cancel out:

log

(
exp(wT

y x)

exp(wT
y′x)

)
Using properties of logarithms:

wT
y x− wT

y′x

This is clearly a linear function with respect to x.
Therefore, the log-odds between any two labels y and y′ in the softmax model is modeled

by a linear function.

Problem 2

Softmax Model for L=2:

p(y = 1|x) =
exp
(
wT

1 x
)

exp(wT
1 x) + exp(wT

2 x)

p(y = 2|x) =
exp
(
wT

2 x
)

exp(wT
1 x) + exp(wT

2 x)
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Logistic Regression Model:

p(y = 1|x) = 1

1 + exp(−wTx)

p(y = 2|x) = 1− p(y = 1|x)

Equating the probability of the first label from both models:

exp
(
wT

1 x
)

exp(wT
1 x) + exp(wT

2 x)
=

1

1 + exp(−wTx)
(1)

From the logistic regression, we have:

exp
(
−wTx

)
=

1− p(y = 1|x)
p(y = 1|x)

(2)

Using the expression for p(y = 1|x) from the softmax model:

exp
(
−wTx

)
=

exp
(
wT

2 x
)

exp(wT
1 x)

(3)

Taking logarithm on both sides:

−wTx = wT
2 x− wT

1 x

wTx = wT
1 x− wT

2 x

From this, we express w as:
w = w1 − w2 (4)

Problem 3

Recall the softmax function for class j:

pW (j|x) =
exp
(
wT

j x
)∑L

y′=1 exp
(
wT

y′x
) (5)

Adding an arbitrary vector c to each wi, we get:

pW ′(j|x) =
exp
(
(wj + c)Tx

)∑L
y′=1 exp((wy′ + c)Tx)

(6)

Expanding, this is:

pW ′(j|x) =
exp
(
wT

j x+ cTx
)∑L

y′=1 exp
(
wT

y′x+ cTx
) (7)

Using properties of exponentials:

pW ′(j|x) =
exp
(
wT

j x
)
· exp

(
cTx
)∑L

y′=1 exp
(
wT

y′x
)
· exp(cTx)

(8)
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As the term exp
(
cTx
)
is common, it can be canceled out, yielding:

pW ′(j|x) =
exp
(
wT

j x
)∑L

y′=1 exp
(
wT

y′x
) (9)

Now, if we set vi = wi − wL, and since wL becomes the zero vector, we have:

vi = wi (10)

For the class L, corresponding to wL:

pV (L|x) =
exp(0)∑L−1

y′=1 exp
(
vTy′x

)
+ exp(0)

(11)

Inspecting closely, the normalization term in the denominator remains unchanged, imply-
ing that the probability distribution over the classes remains unchanged. We can represent
the original parameters as:

vi = wi −wL for i = 1, . . . , L− 1 (12)

and use a zero vector for the L-th class.
This demonstrates that we can represent the original softmax model using only L − 1

nonzero parameter vectors instead of L. Hence, the softmax model is overparameterized.

Problem 4

Given the loss function:

J(W ) = − 1

N

N∑
i=1

log pW (yi|xi) + λ
d∑

j=1

L∑
l=1

W 2
j,l

For a single data point:

Ji(W ) = − log pW (yi|xi) + λ

d∑
j=1

L∑
l=1

W 2
j,l

Differentiating the first term with respect to W :

∂(− log pW (yi|xi))

∂Wj,l

= − 1

pW (yi|xi)

∂pW (yi|xi)

∂Wj,l

Given the softmax definition:

pW (l|xi) =
exp
(
W T

l xi

)∑L
k=1 exp(W

T
k xi)
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Differentiating with respect to Wj,l and handling both cases:

∂pW (l|xi)

∂Wj,l

= xi,j(I(l = yi)− pW (l|xi))

Where I(·) is the indicator function.
The gradient of the regularization term is:

∂

∂Wj,l

(
λ

d∑
j=1

L∑
l=1

W 2
j,l

)
= 2λWj,l

Combining both parts for the entire dataset, we get the gradient in matrix form:

∇J(W ) = −XT (G− P ) + 2λW

Where:

• X is the data matrix of size N × d.

• G is the gold label matrix of size N × L.

• P is the model probability matrix of size N × L.
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