CS 461: Machine Learning Principles Fall 2023

Problem Set 2 *
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Problem 1
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To show that the log-odds between two labels y and ¢’ is modeled by a linear function,
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e:cp(ng)

T
Zyuzl exp(wgl/x)

exp(wZ,x)

log
L T
Zyﬂzl eacp(wy,,m)

Now, since the denominators are the same, they cancel out:
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Using properties of logarithms:

This is clearly a linear function with respect to x.
Therefore, the log-odds between any two labels y and 3/ in the softmax model is modeled
by a linear function.

Problem 2
Softmax Model for L=2:
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Logistic Regression Model:
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Equating the probability of the first label from both models:
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From the logistic regression, we have:
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Using the expression for p(y = 1|z) from the softmax model:
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Taking logarithm on both sides:
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From this, we express w as:
w = w; — W2

Problem 3

Recall the softmax function for class j:
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Adding an arbitrary vector ¢ to each w;, we get:
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Expanding, this is:
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Using properties of exponentials:
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As the term exp (ch) is common, it can be canceled out, yielding:
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Now, if we set v; = w; — wy,, and since w;, becomes the zero vector, we have:

For the class L, corresponding to wy:
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Inspecting closely, the normalization term in the denominator remains unchanged, imply-
ing that the probability distribution over the classes remains unchanged. We can represent
the original parameters as:

vi=w;,—wy for i=1...,L—1 (12)
and use a zero vector for the L-th class.

This demonstrates that we can represent the original softmax model using only L — 1
nonzero parameter vectors instead of L. Hence, the softmax model is overparameterized.

Problem 4

Given the loss function:
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For a single data point:
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Differentiating the first term with respect to W:
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Given the softmax definition:
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Differentiating with respect to W;,; and handling both cases:
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Where [(-) is the indicator function.
The gradient of the regularization term is:
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Combining both parts for the entire dataset, we get the gradient in matrix form:
VJ(W)=—-XT(G - P) +2\W

Where:

e X is the data matrix of size N x d.

e (G is the gold label matrix of size N x L.

e P is the model probability matrix of size N x L.



