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1 Linear Regression

Problem 1

Given the original regression problem, we have:

y(i) = wTx(i) (1)

where y(i) is the label for the ith data point, w is the weight vector, and x(i) is the feature
vector for the ith data point.

Now, suppose we transform the labels as:

ỹ(i) = ay(i) + b (2)

for some constants a and b.
The new regression problem becomes:

ỹ(i) = w̃Tx(i) (3)

Given the transformation, we can express ỹ(i) in terms of the original model:

ỹ(i) = a(wTx(i)) + b (4)

ỹ(i) = awTx(i) + b (5)

Now, recall that we assumed the first dimension of x(i) is always 1. This means that
the first element of the weight vector w (or w̃) acts as the bias term. Let’s denote the first
element of w as w1 and the first element of w̃ as w̃1.

From the equation above, we can deduce:

w̃1 = w1a+ b (6)

and for j > 1:
w̃j = awj (7)

This gives us the mapping g from w∗ to w̃ given a and b:

w̃1 = w1a+ b (8)

w̃j = awj for j > 1 (9)

In essence, each weight in w̃ is a scaled version of the corresponding weight in w∗ by the
factor a except for the bias term, which gets an additional shift by b.
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Problem 2

Given the original regression problem:

y(i) = w∗Tx(i) (10)

Now, the inputs are transformed as:

x̄
(i)
j = cjx

(i)
j (11)

for some nonzero constants c1, . . . , cd ∈ R.
The new regression problem with the transformed inputs is:

y(i) = w̄T x̄(i) (12)

Given the transformation, we can express y(i) in terms of the original model:

y(i) = w∗Tx(i) = w̄T (c⊙ x(i)) (13)

where ⊙ denotes element-wise multiplication.
From the equation above, we can deduce the relationship between the weights of the

transformed model and the original model:

w̄j =
w∗

j

cj
for j = 1, 2, . . . , d (14)

Thus, we can obtain w̄ directly from w∗ without retraining on the new dataset. The
mapping h from w∗ to w̄ given the constants c1, . . . , cd is:

w̄j =
w∗

j

cj
for j = 1, 2, . . . , d (15)

Problem 3

Given the model:
y(i) = wT

truex
(i) + ϵi (16)

where ϵi ∼ N(0, σ2
i ) is a sample-specific Gaussian noise.

Likelihood: MLE seeks the parameter values under which the observed data is most
probable. The likelihood is a measure of how well the model with parameters w explains or
fits the observed data. For a single data point (x(i), y(i)), the term p(y(i)|x(i), w) represents
the probability (under the model with parameters w) of observing the output y(i) given the
input x(i).

The likelihood of observing y(i) given x(i) and w is:

p(y(i)|x(i), w) =
1√
2πσ2

i

exp

(
−(y(i) − wTx(i))2

2σ2
i

)
(17)
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The joint likelihood for the entire dataset is the product of the individual likelihoods
since the samples are independently generated:

L(w) =
N∏
i=1

p(y(i)|x(i), w) (18)

The notation
∏N

i=1 is the product notation, analogous to the Σ notation for summation. It
means that we’re multiplying together the individual likelihoods p(y(i)|x(i), w) for all N data
points in the dataset.

Optimization: To find the maximum likelihood estimate, we’ll maximize the likelihood
(or equivalently, the log-likelihood). The objective is to find the parameter values w that
maximize the likelihood function. Formally, this is represented as:

ŵMLE = arg maxwL(w) (19)

where ŵMLE is the estimate of w that maximizes the likelihood function L(w).
Often, it’s more convenient to work with the log-likelihood due to its mathematical

properties. The objective in terms of the log-likelihood is:

ŵMLE = arg maxw logL(w) (20)

To achieve this optimization, one would typically differentiate the log-likelihood with
respect to w, set the result to zero, and solve for w to find the value that maximizes the
function. Depending on the nature of the likelihood function, this might yield a closed-form
solution, or it might require numerical methods for optimization.

The expanded formula using the joint likelihood equation above is:

logL(w) =
N∑
i=1

(
−1

2
log

(
2πσ2

i

)
− (y(i) − wTx(i))2

2σ2
i

)
(21)

ŵMLE = arg maxw

[
N∑
i=1

(
−1

2
log

(
2πσ2

i

)
− (y(i) − wTx(i))2

2σ2
i

)]
(22)

Closed-form solution: To maximize this with respect to w, we can set its gradient to
zero. The gradient of a function gives the direction of steepest ascent. In the context of a
scalar-valued function of a vector (like the likelihood function with respect to the parameter
vector w, the gradient is a vector of the function’s partial derivatives with respect to each
component of w.

Given the log-likelihood function:

logL(w) =
N∑
i=1

(
−1

2
log

(
2πσ2

i

)
− (y(i) − wTx(i))2

2σ2
i

)
(23)

The maximum likelihood estimate ŵMLE is given by:

ŵMLE = arg maxw

[
N∑
i=1

(
−1

2
log

(
2πσ2

i

)
− (y(i) − wTx(i))2

2σ2
i

)]
(24)
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To find the value of w that maximizes this function, we differentiate with respect to w
and set the result to zero.

This leads to an equation of the form:

XTΣ−1y = XTΣ−1Xw (25)

From the above equation, we can express ŵMLE in closed form as:

ŵMLE = (XTΣ−1X)−1XTΣ−1y (26)

This solution provides the maximum likelihood estimate for w under the given model with
non-identically distributed Gaussian noise.
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