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1 Linear Regression

Problem 1

Given the original regression problem, we have:

Y = T30

(1)

where y® is the label for the i** data point, w is the weight vector, and z( is the feature

vector for the i** data point.
Now, suppose we transform the labels as:

7O = ay® + b

for some constants a and b.
The new regression problem becomes:

g(i) — T @

Given the transformation, we can express ¥ in terms of the original model:

79 = a(wTz®) + b
79 = aw’z® + b

(2)

(3)

(4)
(5)

Now, recall that we assumed the first dimension of z(® is always 1. This means that
the first element of the weight vector w (or w) acts as the bias term. Let’s denote the first

element of w as w; and the first element of W as w;.
From the equation above, we can deduce:

w; = wia+b
and for 7 > 1:
W; = aw;
This gives us the mapping g from w* to w given a and b:
W, = wia+b

w; =aw; for j>1

(6)
(7)

(8)
(9)

In essence, each weight in w is a scaled version of the corresponding weight in w* by the

factor a except for the bias term, which gets an additional shift by b.
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Problem 2
Given the original regression problem:
y O = Tz (10)
Now, the inputs are transformed as:
W = cjx@ (11)

for some nonzero constants ci,...,cq € R.
The new regression problem with the transformed inputs is:

y(i) — wTi,(i) (12)
Given the transformation, we can express ¥ in terms of the original model:
y D = w Tz = @7 (c o z®) (13)

where ® denotes element-wise multiplication.
From the equation above, we can deduce the relationship between the weights of the
transformed model and the original model:

w
w;=— for j=12,....d (14)

Thus, we can obtain w directly from w* without retraining on the new dataset. The

mapping h from w* to w given the constants cq, ..., cq is:
w*
w;=-— for j=1,2,....d (15)
c

Problem 3

Given the model:
T

y(Z) = wtruex(i) + € (16>
where €; ~ N(0,02) is a sample-specific Gaussian noise.

Likelihood: MLE seeks the parameter values under which the observed data is most
probable. The likelihood is a measure of how well the model with parameters w explains or
fits the observed data. For a single data point (z®,y®), the term p(y¥|z®, w) represents
the probability (under the model with parameters w) of observing the output y® given the
input z@.

The likelihood of observing y® given 2 and w is:

o 1 (i) _ T2
Py, w) = ¢_2exp(—<y >) a7)
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The joint likelihood for the entire dataset is the product of the individual likelihoods
since the samples are independently generated:

L(w) = Hp(y“)!x("), w) (18)

The notation Hf\il is the product notation, analogous to the ¥ notation for summation. It
means that we're multiplying together the individual likelihoods p(y®|2® w) for all N data
points in the dataset.

Optimization: To find the maximum likelihood estimate, we’ll maximize the likelihood
(or equivalently, the log-likelihood). The objective is to find the parameter values w that
maximize the likelihood function. Formally, this is represented as:

Wypp = arg max,, L(w) (19)

where Wy g is the estimate of w that maximizes the likelihood function L(w).
Often, it’s more convenient to work with the log-likelihood due to its mathematical
properties. The objective in terms of the log-likelihood is:

Wy e = arg max,, log L(w) (20)

To achieve this optimization, one would typically differentiate the log-likelihood with
respect to w, set the result to zero, and solve for w to find the value that maximizes the
function. Depending on the nature of the likelihood function, this might yield a closed-form
solution, or it might require numerical methods for optimization.

The expanded formula using the joint likelihood equation above is:

N A ,
1 (y® — wlz®)2
log L(w) = Y (== log(2m07) — o1
og L(w) i:1( 5 og(2ma7) 307 (21)
N . .
1 (&) _ 4T ()2
Wy LE = arg maxw[ E (—5 102;(27?01-2) — y 27;)2 z?) ) (22)
=1 7

Closed-form solution: To maximize this with respect to w, we can set its gradient to
zero. The gradient of a function gives the direction of steepest ascent. In the context of a
scalar-valued function of a vector (like the likelihood function with respect to the parameter
vector w, the gradient is a vector of the function’s partial derivatives with respect to each
component of w.

Given the log-likelihood function:

N

1 2 (y" —w"z)?
log L(w) = ; (—5 log(270}) — 207 (23)
The maximum likelihood estimate w,; g is given by:
N . .
. 1 ) <y(z) o ’UJT.I‘(l))Q
Wy LE = arg max,, [; (—5 log(27mi) - 207 (24)
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To find the value of w that maximizes this function, we differentiate with respect to w
and set the result to zero.
This leads to an equation of the form:

X'y ly = XTIy Xw (25)
From the above equation, we can express Wy, in closed form as:
Wy = (XTY X)Xy y (26)

This solution provides the maximum likelihood estimate for w under the given model with
non-identically distributed Gaussian noise.



