# Problem Set 1* 

Tasha Pais ${ }^{\dagger}$

## 1 Linear Regression

## Problem 1

Given the original regression problem, we have:

$$
\begin{equation*}
y^{(i)}=w^{T} x^{(i)} \tag{1}
\end{equation*}
$$

where $y^{(i)}$ is the label for the $i^{\text {th }}$ data point, $w$ is the weight vector, and $x^{(i)}$ is the feature vector for the $i^{\text {th }}$ data point.

Now, suppose we transform the labels as:

$$
\begin{equation*}
\tilde{y}^{(i)}=a y^{(i)}+b \tag{2}
\end{equation*}
$$

for some constants $a$ and $b$.
The new regression problem becomes:

$$
\begin{equation*}
\tilde{y}^{(i)}=\tilde{w}^{T} x^{(i)} \tag{3}
\end{equation*}
$$

Given the transformation, we can express $\tilde{y}^{(i)}$ in terms of the original model:

$$
\begin{align*}
& \tilde{y}^{(i)}=a\left(w^{T} x^{(i)}\right)+b  \tag{4}\\
& \tilde{y}^{(i)}=a w^{T} x^{(i)}+b \tag{5}
\end{align*}
$$

Now, recall that we assumed the first dimension of $x^{(i)}$ is always 1 . This means that the first element of the weight vector $w$ (or $\tilde{w}$ ) acts as the bias term. Let's denote the first element of $w$ as $w_{1}$ and the first element of $\tilde{w}$ as $\tilde{w}_{1}$.

From the equation above, we can deduce:

$$
\begin{equation*}
\tilde{w}_{1}=w_{1} a+b \tag{6}
\end{equation*}
$$

and for $j>1$ :

$$
\begin{equation*}
\tilde{w}_{j}=a w_{j} \tag{7}
\end{equation*}
$$

This gives us the mapping $g$ from $w^{*}$ to $\tilde{w}$ given $a$ and $b$ :

$$
\begin{align*}
& \tilde{w}_{1}=w_{1} a+b  \tag{8}\\
& \tilde{w}_{j}=a w_{j} \quad \text { for } \quad j>1 \tag{9}
\end{align*}
$$

In essence, each weight in $\tilde{w}$ is a scaled version of the corresponding weight in $w^{*}$ by the factor $a$ except for the bias term, which gets an additional shift by $b$.

[^0]
## Problem 2

Given the original regression problem:

$$
\begin{equation*}
y^{(i)}=w^{* T} x^{(i)} \tag{10}
\end{equation*}
$$

Now, the inputs are transformed as:

$$
\begin{equation*}
\bar{x}_{j}^{(i)}=c_{j} x_{j}^{(i)} \tag{11}
\end{equation*}
$$

for some nonzero constants $c_{1}, \ldots, c_{d} \in \mathbb{R}$.
The new regression problem with the transformed inputs is:

$$
\begin{equation*}
y^{(i)}=\bar{w}^{T} \bar{x}^{(i)} \tag{12}
\end{equation*}
$$

Given the transformation, we can express $y^{(i)}$ in terms of the original model:

$$
\begin{equation*}
y^{(i)}=w^{* T} x^{(i)}=\bar{w}^{T}\left(c \odot x^{(i)}\right) \tag{13}
\end{equation*}
$$

where $\odot$ denotes element-wise multiplication.
From the equation above, we can deduce the relationship between the weights of the transformed model and the original model:

$$
\begin{equation*}
\bar{w}_{j}=\frac{w_{j}^{*}}{c_{j}} \quad \text { for } \quad j=1,2, \ldots, d \tag{14}
\end{equation*}
$$

Thus, we can obtain $\bar{w}$ directly from $w^{*}$ without retraining on the new dataset. The mapping $h$ from $w^{*}$ to $\bar{w}$ given the constants $c_{1}, \ldots, c_{d}$ is:

$$
\begin{equation*}
\bar{w}_{j}=\frac{w_{j}^{*}}{c_{j}} \quad \text { for } \quad j=1,2, \ldots, d \tag{15}
\end{equation*}
$$

## Problem 3

Given the model:

$$
\begin{equation*}
y^{(i)}=w_{\text {true }}^{T} x^{(i)}+\epsilon_{i} \tag{16}
\end{equation*}
$$

where $\epsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ is a sample-specific Gaussian noise.
Likelihood: MLE seeks the parameter values under which the observed data is most probable. The likelihood is a measure of how well the model with parameters $w$ explains or fits the observed data. For a single data point $\left(x^{(i)}, y^{(i)}\right)$, the term $p\left(y^{(i)} \mid x^{(i)}, w\right)$ represents the probability (under the model with parameters $w$ ) of observing the output $y^{(i)}$ given the input $x^{(i)}$.

The likelihood of observing $y^{(i)}$ given $x^{(i)}$ and $w$ is:

$$
\begin{equation*}
p\left(y^{(i)} \mid x^{(i)}, w\right)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y^{(i)}-w^{T} x^{(i)}\right)^{2}}{2 \sigma_{i}^{2}}\right) \tag{17}
\end{equation*}
$$

The joint likelihood for the entire dataset is the product of the individual likelihoods since the samples are independently generated:

$$
\begin{equation*}
L(w)=\prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, w\right) \tag{18}
\end{equation*}
$$

The notation $\prod_{i=1}^{N}$ is the product notation, analogous to the $\Sigma$ notation for summation. It means that we're multiplying together the individual likelihoods $p\left(y^{(i)} \mid x^{(i)}, w\right)$ for all $N$ data points in the dataset.

Optimization: To find the maximum likelihood estimate, we'll maximize the likelihood (or equivalently, the log-likelihood). The objective is to find the parameter values $w$ that maximize the likelihood function. Formally, this is represented as:

$$
\begin{equation*}
\hat{w}_{M L E}=\arg \max _{w} L(w) \tag{19}
\end{equation*}
$$

where $\hat{w}_{M L E}$ is the estimate of $w$ that maximizes the likelihood function $L(w)$.
Often, it's more convenient to work with the log-likelihood due to its mathematical properties. The objective in terms of the log-likelihood is:

$$
\begin{equation*}
\hat{w}_{M L E}=\arg \max _{w} \log L(w) \tag{20}
\end{equation*}
$$

To achieve this optimization, one would typically differentiate the log-likelihood with respect to $w$, set the result to zero, and solve for $w$ to find the value that maximizes the function. Depending on the nature of the likelihood function, this might yield a closed-form solution, or it might require numerical methods for optimization.

The expanded formula using the joint likelihood equation above is:

$$
\begin{gather*}
\log L(w)=\sum_{i=1}^{N}\left(-\frac{1}{2} \log \left(2 \pi \sigma_{i}^{2}\right)-\frac{\left(y^{(i)}-w^{T} x^{(i)}\right)^{2}}{2 \sigma_{i}^{2}}\right)  \tag{21}\\
\hat{w}_{M L E}=\arg \max w\left[\sum_{i=1}^{N}\left(-\frac{1}{2} \log \left(2 \pi \sigma_{i}^{2}\right)-\frac{\left(y^{(i)}-w^{T} x^{(i)}\right)^{2}}{2 \sigma_{i}^{2}}\right)\right] \tag{22}
\end{gather*}
$$

Closed-form solution: To maximize this with respect to $w$, we can set its gradient to zero. The gradient of a function gives the direction of steepest ascent. In the context of a scalar-valued function of a vector (like the likelihood function with respect to the parameter vector $w$, the gradient is a vector of the function's partial derivatives with respect to each component of $w$.

Given the log-likelihood function:

$$
\begin{equation*}
\log L(w)=\sum_{i=1}^{N}\left(-\frac{1}{2} \log \left(2 \pi \sigma_{i}^{2}\right)-\frac{\left(y^{(i)}-w^{T} x^{(i)}\right)^{2}}{2 \sigma_{i}^{2}}\right) \tag{23}
\end{equation*}
$$

The maximum likelihood estimate $\hat{w}_{M L E}$ is given by:

$$
\begin{equation*}
\hat{w}_{M L E}=\arg \max _{w}\left[\sum_{i=1}^{N}\left(-\frac{1}{2} \log \left(2 \pi \sigma_{i}^{2}\right)-\frac{\left(y^{(i)}-w^{T} x^{(i)}\right)^{2}}{2 \sigma_{i}^{2}}\right)\right] \tag{24}
\end{equation*}
$$

To find the value of $w$ that maximizes this function, we differentiate with respect to $w$ and set the result to zero.

This leads to an equation of the form:

$$
\begin{equation*}
\mathbf{X}^{T} \Sigma^{-1} \mathbf{y}=\mathbf{X}^{T} \Sigma^{-1} \mathbf{X} w \tag{25}
\end{equation*}
$$

From the above equation, we can express $\hat{w}_{M L E}$ in closed form as:

$$
\begin{equation*}
\hat{w}_{M L E}=\left(\mathbf{X}^{T} \Sigma^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \Sigma^{-1} \mathbf{y} \tag{26}
\end{equation*}
$$

This solution provides the maximum likelihood estimate for $w$ under the given model with non-identically distributed Gaussian noise.


[^0]:    *Due: September 27, 2023, Student(s) worked with: Arul Elango
    ${ }^{\dagger}$ NetID: tdp74, Email: tdp74@scarletmail.rutgers.edu

